skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kontuľ, Ivan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Terrestrial and extraterrestrial radioisotope research has been strongly dependent on the development of analytical methods which would enable to trace radioisotopes at low concentrations in subgram samples (e.g., in tree rings, ice cores, meteorites, etc.). Accelerator mass spectrometry (AMS) has become the most sensitive technique for ultralow-level analysis of long-lived radioisotopes, such as14C,10Be and26Al. We review developments and applications carried out in the CENTA laboratory, and describe a recently installed fully equipped AMS line, designed for analysis of long-lived radioisotopes from tritium to curium. 
    more » « less
  2. Abstract The LEGEND collaboration has been developing a76Ge-based double-beta decay experimental program where precise radiopurity measurements of ultraclean materials are crucial. Ultralow concentrations of thorium and uranium, the main contributors to the detector background via their decay products, can be determined by inductively coupled plasma mass spectrometry (ICPMS) and accelerator mass spectrometry (AMS). Here we shall present recent developments in thorium and uranium mass spectrometry methods, together with basics of separation chemistry applied to process different samples. The new possibilities to measure232Th and238U by ICPMS and AMS at the Comenius University in Bratislava are discussed as well. 
    more » « less